Strategy to Predict Radionuclide Release from Glass Waste forms

July 13, 2009

Background

•177 Buried Single- and Double-Shell Tanks
•Produce HLW and high Na bearing LAW glasses
•Bury LAW in a Shallow Subsurface Burial Facility (IDF)

Background

Overview of Integrated Strategy

- Subsurface water and gas flow
- Waste glass dissolution
- Transport of aqueous and gaseous chemical species
- Kinetic and equilibrium chemical reactions
- Secondary mineral dissolution and precipitation
- Coupling between hydraulic properties and mineral precipitation and dissolution

Integrated Strategy cont.

- Glasses tested span the expected WTP processing
- Laboratory Tests Methods:
 - VHT, PCT, MCC-1, SPFT, & PUF
- Quantify parameters from test data
- Parameterize Glass Corrosion Model (rate law)
- Validate Rate Law through lab and field-scale experiments
 - PUF experiments (column test)
 - Lysimeter experiments

Glass Test Methods

PCT (B) – Long-term behavior under saturated conditions

- SPFT Determine parameters for fixed set of environmental conditions (e.g. pH, T, silicic acid) for input to reactive transport codes
- PUF Determine long-term behavior under disposal facility-relevant conditions

VHT – Determine secondary phases produced once glass degrades; quick surrogate for PUF

Rate Law Model For Glass Corrosion

Dissolution mechanisms of glass – general scheme

Dissolution mechanisms of glass – *interdiffusion, hydrolysis, and affinity*

Dissolution mechanisms of glass – *Residual Rate*

Test Methods:

Dissolution mechanisms of glass – *Alteration Renewal*

Integrated Strategy – Model Validation

- 3 glass containing lysimeters were buried on site
 - 2 durable glasses (actual WTP glass)
 - 1 less durable glass (HAN28F)
- Six 40-kg glass cylinders buried in 2002 per lysimeter
- 3-times the natural infiltration rate via irrigation

Re (chemical analogue for Tc-99) release from HAN28F glass (poorly durable glass).

NATIONAL LABORATORY

Novt Stop

Son of GLAMOR

- DOE-NE funded
- Participants: US Nat. lab/University and International research
- Develop consensus rate law for glass corrosion in range of disposal environments
- Focus on improving the understanding of residual rate, r_∞
- Facilitate model development
 - Near-field model \rightarrow modeling and simulation activity
 - Capture process level detail across-scales

P. van Iseghem, S. Gin, B. Grambow, B. P. McGrail, D.M. Strachan, and G. Wick (2003). *A critical evaluation of the dissolution mechanism of HLW glasses in conditions of relevance for geologic disposal*. R-3702, European Commission.

NATIONAL LABORATORY

Summary

- Strategy for predicting glass corrosion must be an integrated approach
- Important to conduct model validation experiments under conditions that mimic the open flow and transport conditions
 - PUF method
 - Field Experiment Lysimeter
- Additional equations maybe needed to model the residual rate
 - IEX and Hydrated layer effect
- Techniques to predict long-term glass behavior based on glass composition/structure

Questions????

Backups

Glass Structure and Forward Rate Relationship "simple four component alumino-borosilicate glasses"

Pressurized Unsaturated Flow Apparatus

XMT-CT Scan

- Accelerate "aging" of Waste Forms
 - Hydraulically Unsaturated
 - Steady Volumetric Flow Rate
 - Elevated Temperature
- Real-time monitoring
 - Bulk Water Content
 - Effluent Chemistry
 - Real-time pH & EC

- Transport properties
 - Reactive and Nonreactive Tracers
- Spatial Imaging via Xray Micro-tomography
- Computed Tomography
 - Changes in Pore Structure
 - Moisture Distribution

Void Space (Black), Particles (White), Water (Grey)

PUF Results: Test Metrics and Rates

Predictive Modeling with 1-D STORM Reactive Transport Code for PUF test with LAWA44 at 99°C

20

SON of Clamor cont

Residual glass corrosion model

- generate glass with well developed alteration
 - generate glass or saturated solution with tracers (isotopes)
 - react glass in closed system (high S/V, high temp, ...)
 - include monolith in test (for surface analysis and further testing)
 - \bullet analyze composition of solution in contact with glass at r_{∞}
- test glass with saturated solutions
 - low flow-rate SPFT or slow pulse flow*
 - measure reactions with tracers
 - analyze monolith profile for tracer components
- all experiments to be modeled before determining parameters

